Linear Systems

- Textbook: Strum, “Contemporary Linear Systems using MATLAB.”

- Contents
 1. Basic Concepts
 2. Continuous Systems
 a. Laplace Transforms and Applications
 b. Frequency Response of Continuous Systems
 c. Continuous-Time Fourier Series and Transforms
 d. State-Space Topics for Continuous Systems
 3. Discrete Systems
 a. z Transforms and Applications
 b. Frequency Response of Discrete Systems
 c. Discrete Fourier Series and Transforms
 d. State-Space Topics for Discrete Systems
Chap. 1 Basic Concepts

Continuos V. S. Discrete

![Graph showing analog and sampled signals](image)

FIGURE 1.3 Analog signal and sequence resulting from the sampling process

Continuous System

![Diagram of continuous system](image)

FIGURE 1.2 Continuous system

Discrete System

![Diagram of discrete system](image)

FIGURE 1.4 Discrete system
Unit Impulse

1. A virtual function.
2. Any arbitrary analog signal can be decomposed by impulses.
3. The response of any analog signal can be decomposed by impulse responses.

Properties:
\[\delta(t) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases} \]
\[\int_{-\infty}^{0} \delta(t) dt = 1 \]
\[\int_{-\infty}^{\infty} f(t) \delta(t-t_1) dt = f(t_1) \] (Sifting Property)
\[f(t) = \int_{-\infty}^{\infty} f(\tau) \delta(t-\tau) d\tau \]

Example:
\[\delta(t) = \lim_{\Delta \to 0} \left\{ \begin{array}{ll} \frac{1}{\Delta}, & 0 \leq t \leq \Delta \\ 0, & \text{otherwise} \end{array} \right. \]
Unit Step Function

\[u(t) = \begin{cases} 1, & t \geq 0 \\ 0, & t < 0 \end{cases} \]

Representing Signals

a. \[f(t) = \frac{A}{2} [u(t) - u(t-2)] \]

b. \[f(t) = \sum_{m=-\infty}^{\infty} \frac{A}{2} (t-2m) [u(t-2m) - u(t-2m-2)] \]
Conversion between Continuous and Discrete Signals

Sampling Theorem: Let

\(f_{\text{max}} \): the maximum frequency component of the signal,
\(f_s \): the sampling frequency.

then \(f_s \geq 2f_{\text{max}} \) if the signal can be uniquely represented by the samples, or the signal can fully recovered from the samples.
Chap. 2 Continuous Systems

Basic Concept

Linearity: A system is linear if and only if it satisfies the principle of homogeneity and additivity.
1. Homogeneity
2. Additivity
3. Homogeneity and additivity

a. Principle of homogeneity

\[x_1(t) \rightarrow \text{Linear system} \rightarrow y_1(t) \]

\[x(t) = C_1 x_1(t) \rightarrow \text{Linear system} \rightarrow y(t) = C_1 y_1(t) \]

b. Principle of additivity

\[x_1(t) \rightarrow \text{Linear system} \rightarrow y_1(t) \]

\[x(t) = x_1(t) + x_2(t) \rightarrow \text{Linear system} \rightarrow y(t) = y_1(t) + y_2(t) \]

\[x_2(t) \rightarrow \text{Linear system} \rightarrow y_2(t) \]

c. Principle of superposition

\[x_1(t) \rightarrow \text{Linear system} \rightarrow y_1(t) \]

\[x(t) = C_1 x_1(t) + C_2 x_2(t) \rightarrow \text{Linear system} \rightarrow y(t) = C_1 y_1(t) + C_2 y_2(t) \]

FIGURE 2.3 Linear
Time Invariance: The same input applied at different times will produce the same output except shifted in time. That is, for arbitrary t_0

![Diagram](image)

Linear Time-Invariant Systems (LTI): Linear + time-invariant.
1. Can be analyzed by Laplace and Fourier transforms.
2. In time domain, described by linear differential equations with constant coefficients.
3. In transform domains, described by linear algebraic equation.

Causality: Output depends on only previous inputs. That is, $y(t)$ only depends on $x(\tau)$, $\tau \leq t$.

![Graphs](image)
Stability: if the input is bounded, the output is also bounded (bounded-input-bounded-output BIBO).

Problems 2.1. Discuss the properties of the following continuous systems.
 a. \(y(t) = Kx(t) + A \) (i) Linear? (ii) Time invariant?
 b. \(y(t) = \int_{0}^{t} x(\tau) d\tau + y(0), \quad t \geq 0 \). Causal or noncausal?
 c. \(y(t) = t|x(t)|^2 \)

Nth-Order Differential Equation Model
In general, a single-input-single-output LTI system can be modeled by Nth-order differential equation as follows,
\[
a_0 y(t) + a_1 \frac{dy(t)}{dt} + \ldots + a_N \frac{d^N y(t)}{dt^N} = b_0 x(t) + b_1 \frac{dx(t)}{dt} + \ldots + b_N \frac{d^N x(t)}{dt^N}
\]

Example:

![Circuit Diagram]

a. Analog filter

\[
\frac{d^2 v(t)}{dt^2} + \frac{2}{RC_1} \frac{dv(t)}{dt} + \frac{1}{R^2 C_1 C_2} v(t) = \frac{1}{R^2 C_1 C_2} e(t)
\]

Initial Condition Solution of a Differential Equation
1. Find the homogeneous solution, i.e.
Let $y(t) = Ce^{st}$, substitute this to the above equation. Then,

$$a_0 s^0 Ce^{st} + a_1 s^1 Ce^{st} + \ldots + a_N s^N Ce^{st} = 0 \Rightarrow a_0 s^0 + a_1 s^1 + \ldots + a_N s^N = 0$$

which is a polynomial called characteristic equation.

Let r_1, r_2, \ldots, r_N be the roots of the characteristic equation, then

$$\sum_{k=0}^{N} a_k s^k = a_N (s-r_1)(s-r_2) \ldots (s-r_N) = 0$$

Note: if stable, the real parts of the roots must be negative.

The initial condition solution is in the form

$$y_{IC} = C_1 e^{r_1 t} + C_2 e^{r_2 t} + \ldots + C_N e^{r_N t}$$

where C_1, C_2, \ldots, C_N are unknown coefficients to be determined by the initial conditions

$$y(0), \frac{dy(0)}{dt}, \ldots, \frac{d^{N-1}y(0)}{dt^{N-1}}.$$

Problem 2.2

Let

$$\ddot{\theta}(t) + 3 \dot{\theta}(t) + 2 \theta(t) = \frac{1}{3} \lambda(t)$$

a. Find the system’s characteristic equation.
b. Find the root.
c. Is the system stable?
d. Find the general form of the homogeneous solution.
e. Find the initial solution for $\theta(0) = 1$ and $\dot{\theta}(0) = 0$.

The Unit Impulse Response Model

Let the input be $\delta(t)$, and output $h(t)$, then $h(t)$ is called impulse response. For any input $x(t)$, we have
\[y(t) = \int_{-\infty}^{\infty} x(\tau) h(t-\tau) \, d\tau \]

Sifting property:
\[\int_{-\infty}^{\infty} f(t) \delta(t-t_0) \, dt = f(t_0) \]

Stability Definition:
\[\int_{-\infty}^{\infty} |h(\tau)| \, d\tau < \infty \]

Problem 2.3
\[y(t) = \int_{0}^{t} x(\tau) \, d\tau + y(0), \text{ for } t \geq 0 \]

a. Find impulse response \(h(t) \).
b. Is the system stable?

Convolution

Let,
\[\delta_{\Delta}(t) = \begin{cases}
\frac{1}{\Delta}, & 0 \leq t \leq \Delta \\
0, & \text{otherwise}
\end{cases} \]

then
\[x(t) \approx \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t-k\Delta) \Delta \]

Let \(\Delta \to 0 \), then
A continuous-time function can be broken up into a summation of shifted impulse functions.

\[x(t) = \lim_{\Delta \to 0} \sum_{k=-\infty}^{\infty} x(k\Delta) \delta_{\Delta}(t-k\Delta) \Delta = \int_{-\infty}^{\infty} x(\tau) \delta(t-\tau) d\tau \]

Suppose an LTI continuous system has the response \(h_{\Delta}(t) \) of impulse \(\delta_{\Delta}(t) \)

1. Time Invariant
 \(\delta_{\Delta}(t-k\Delta) \rightarrow h_{\Delta}(t-k\Delta) \)

2. Homogeneity
 \(x(k\Delta) \delta_{\Delta}(t-k\Delta) \rightarrow x(k\Delta)h_{\Delta}(t-k\Delta) \)

3. Additivity
4. Let $\Delta \to 0$, then

$$x(t) \rightarrow y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau) d\tau = x(t)*h(t) \quad \text{(Convolution Integral)}$$

where "*" is the convolution symbol.

Alternative form: $y(t) = \int_{-\infty}^{\infty} x(t-\tau)h(\tau) d\tau$

Example:

$h(t) = Ae^{\alpha t}u(t), \ \alpha < 0,$

$x(t) = Be^{\beta t}u(t), \ \beta < 0.$

$$y(t) = \int_{-\infty}^{\infty} Ae^{\alpha \tau}u(\tau)Be^{\beta(t-\tau)}u(t-\tau) d\tau$$

$$= \int_{0}^{t} Ae^{\alpha \tau}Be^{\beta(t-\tau)} d\tau$$

$$= \frac{AB}{\alpha - \beta} \left[e^{\alpha t} - e^{\beta t} \right]_{t \geq 0}.$$
b. Unit impulse response and exponential input signal

\[h(t) = A e^{\alpha t} u(t) \]

\[x(t) = B e^{\beta t} u(t) \]

c. Unit impulse response and time-reversed input as functions of \(\tau \)

\[h(\tau) = A e^{\alpha \tau} u(\tau) \]

\[x(-\tau) = B e^{\beta \tau} u(-\tau) \]

FIGURE 2.10 *Analytical convolution*
Example:

FIGURE 2.11 System data
Problem 2.4 \(h(t) = e^{-t}u(t), \ x(t) = tu(t) \), find \(y(1) \) by MATLAB.

Analytic solution: \(y(1) = \frac{1}{e} \)

Problem 2.5 Convolution with Impulse functions.
Sinusoidal Steady-State Response

What is the output when the input is an AC signal, that is, a sinusoidal signal? Since
\[e^{j\omega t} = \cos \omega t + j \sin \omega t \]
let,
\[x(t) = 2 \cos \omega t = e^{j\omega t} + e^{-j\omega t} \]
then,
\[
y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)\,d\tau
\]
\[= \int_{-\infty}^{\infty} h(\tau)(e^{j\omega(t-\tau)} + e^{-j\omega(t-\tau)})\,d\tau
\]
\[= \int_{-\infty}^{\infty} h(\tau)e^{j\omega(t-\tau)}\,d\tau + \int_{-\infty}^{\infty} h(\tau)e^{-j\omega(t-\tau)}\,d\tau
\]
\[= e^{j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{-j\omega \tau}\,d\tau + e^{-j\omega t} \int_{-\infty}^{\infty} h(\tau)e^{j\omega \tau}\,d\tau
\]
Let
\[\int_{-\infty}^{\infty} h(\tau)e^{-j\omega \tau}\,d\tau = H(j\omega) = |H(j\omega)|e^{-j/2}H(j\omega), \]
then
Conclusion: in general, when a sinusoidal signal

\[x(t) = A \cos(\omega t + \alpha), \quad -\infty < t < \infty \]

is applied to a stable LTI system, the output is

\[y(t) = A |H(j\omega)| \cos(\omega t + \angle H(j\omega) + \alpha). \]

That is, the output is also a sinusoidal signal.

Problem 2.6

A highpass filter has impulse response

\[h(t) = \delta(t) - 10e^{-10t}u(t). \]

If

\[x(t) = 5 + 5\cos(10t), \quad -\infty < t < \infty \]

Find \(y(t) \).

First, compute \(H(j\omega) \).

\[
H(j\omega) = \int_{-\infty}^{\infty} h(\tau)e^{-j\omega \tau} d\tau
= \int_{-\infty}^{\infty} \left[\delta(\tau) - 10e^{-10\tau}u(\tau) \right] e^{-j\omega \tau} d\tau
= 1 - 10 \int_0^\infty e^{-10\tau}e^{-j\omega \tau} d\tau
= 1 + \frac{10e^{-10\omega}e^{-j\omega}}{10+j\omega}
= 1 + \frac{10e^{-10\omega}}{10+j\omega}
= \frac{10 + 10e^{-10\omega}}{10+j\omega}
\]

The input \(x(t) \) has two frequency components

1. \(\omega = 0 \): \(H(j0) = 0 \), no output.
2. $\omega=10$: $H(j10)=0.707e^{j0.785}$, the output is $y(t)=3.53\cos(10t+0.785)$

Alternative Path to $H(j\omega)$

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{L} b_k \frac{d^k x(t)}{dt^k} \Rightarrow \sum_{k=0}^{N} a_k H(j\omega)(j\omega)^k e^{j\omega t} = \sum_{k=0}^{L} b_k (j\omega)^k e^{j\omega t}$$

$$\Rightarrow H(j\omega) = \frac{\sum_{k=0}^{L} b_k (j\omega)^k}{\sum_{k=0}^{N} a_k (j\omega)^k}$$

Problem 2.7

A bandpass analog filter is described by

$$\ddot{\nu}(t)+2\dot{\nu}(t)+100\nu(t)=100\dot{x}(t)$$

where $\nu(t)$ is the output and $x(t)$ is input.

a. Determine the frequency response.

b. Find the output of $x(t)=10+10\cos(10t)+100\cos(100t)$

$$H(j\omega)=\frac{100j\omega}{(j\omega)^2+2j\omega+100}$$

$H(0)=0$, $H(j10)=50$, $H(j100)=1.01e^{-j1.55}$
\begin{align*}
\mathbf{y}(t) &= 500 \cos(10t) + 101 \cos(100t - 1.55) \\
\text{State-Space Model}
\end{align*}

If there is no derivative term in the input, that is,
\[\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = b_0 x(t)\]

we can define
\[v_1(t) = y(t), \quad v_2(t) = \frac{dy(t)}{dt}, \quad v_3(t) = \frac{d^2 y(t)}{dt^2}, \ldots, v_N(t) = \frac{d^{N-1} y(t)}{dt^{N-1}}.\]

Then we can turn the original equation to a set of first-order differential equations:
\begin{align*}
\frac{dv_1(t)}{dt} &= \frac{dy(t)}{dt} = v_2(t) \\
\frac{dv_2(t)}{dt} &= \frac{d^2 y(t)}{dt^2} = v_3(t) \\
&\vdots \\
\frac{dv_{N-1}(t)}{dt} &= \frac{d^{N-1} y(t)}{dt^{N-1}} = v_N(t) \\
\frac{dv_N(t)}{dt} &= \frac{d^N y(t)}{dt^N} = -a_0 v_1(t) - a_1 v_2(t) - \cdots - a_{N-1} v_{N-1}(t) + b_0 x(t)
\end{align*}

We call \(v_1(t), v_2(t), \ldots, v_N(t) \) state variables and the following state vector:
\[\mathbf{v}(t) = \begin{bmatrix} v_1(t) & v_2(t) & \ldots & v_N(t) \end{bmatrix}^T.\]

Then, the set of equations become in matrix form
A common definition for the state of a system is as follows: The state of a system is a minimum set of quantities \(v_1(t), v_2(t), \ldots, v_N(t) \) which if known at \(t=t_0 \) are uniquely determined for \(t \geq t_0 \) by specifying the inputs to the system for \(t \geq t_0 \).

Why?

\[
\frac{dv(t)}{dt} = A v(t) + B x(t)
\]

The outputs \(y(t) \) of a system are related to the states \(v(t) \) and a single input \(x(t) \) by the output equation

\[
y(t) = C v(t) + D x(t)
\]

where \(C \) is an \(M \) by \(N \) matrix and \(D \) is an \(M \) by 1 vector.

Problem 2.8

\[
\dot{\theta}(t) = \theta(t) + x(t), \quad \ddot{\theta}(t) = \beta \theta(t) - x(t)
\]

a. Describe the system in state variable form with \(v_1(t) = \theta(t) \) and \(v_3(t) = p(t) \).

b. Find the output equation if \(y_1(t) = \theta(t) \) and \(y_2(t) = p(t) \).
System Simulation (Numerical Solution Using MATLAB)

Consider

$$\ddot{\theta}(t) + 3\dot{\theta}(t) + 2\theta(t) = \frac{1}{3} \lambda(t)$$

Let

$$v_1(t) = \theta(t), \quad v_2(t) = \omega(t) = \dot{v}_1(t), \quad \lambda(t) = x(t),$$

then

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ \frac{1}{3} \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}, \quad D = 0.$$

Case 1: initial condition $v_1(0) = 1, \quad v_2(0) = 0. \quad x(t) = 0. \quad 0 \leq t \leq 5.$

A=[0 1; -2 -3];
B=[0;1/3];
C=[1 0];
D=0;
v0=[1;0];
tspan=[0 5];
x=@(t) 0;
df=@(t,v) A*v+B*x(t);
[t vvv]=ode45(df,tspan,v0);
plot(t,vvv(:,1));
xlabel('t');
ylabel('theta');

Case 2: initial condition $v_1(0) = 0, \quad v_2(0) = 0. \quad x(t) = 1. \quad 0 \leq t \leq 5.$
v0=[0;0];
x=@(t) 1;
df=@(t,v) A*v+B*x(t);
[t vv]=ode45(df,tspan,v0);
plot(t,vv(:,1));
xlabel('t');
ylabel('theta');

Example 2.1: An Oscillatory System

\[
\ddot{y}(t) + \omega_0^2 y(t) = kx(t)
\]

a. Find the characteristic equation and roots.
b. Solve for initial conditions of $y(0)=2$, $\dot{y}(0)=0$ and $x(t)=0$.
c. Write the state-space equation and use MATLAB to solve the equation. Assume $\omega_0=2\pi$. Plot the result with (b) to compare.
Example 2.2: Second-Order Systems

\[\ddot{y}(t) + 2\zeta \omega_n \dot{y}(t) + \omega_n^2 y(t) = kx(t) \]

where \(\omega_n \) is the natural frequency.

a. From

\[L \frac{di(t)}{dt} + Ri(t) + v(t) = e(t) \]
\[C \frac{dv(t)}{dt} = i(t) \]

find

\[\ddot{v}(t) + \alpha \dot{v}(t) + \beta v(t) = \gamma e(t) \]

b. Find the characteristic equation in terms of RLC circuit parameters and \((\omega_n, \zeta)\).

c. Let \(L \) and \(C \) fixed and \(0 \leq R \leq \infty \), find the range of \(R \) that will yield

(i) Purely imaginary roots.

(ii) Complex roots.

(iii) Real roots.

\[s_{1,2} = \frac{1}{2} \left\{ \frac{R}{L} \pm \sqrt{\frac{R^2}{L^2} - \frac{4}{LC}} \right\}, \quad \text{or} \quad s_{1,2} = \omega_n \left(-\zeta \pm \sqrt{\zeta^2 - 1} \right) \]

d. Find the state-space equation.

\[\dot{\mathbf{v}}(t) = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta \omega_n \end{bmatrix} \mathbf{v}(t) + \begin{bmatrix} 0 \\ K \end{bmatrix} x(t) \]

e. Plot for the following cases: \((\omega_n = 10, \zeta = 0.707), (\omega_n = 10, \zeta = 0), (\omega_n = 10, \zeta = 2.3), (\omega_n = 10, \zeta = 0.1), (\omega_n = 100, \zeta = 0.1)\).

\[\omega_n = 10; \]
\[\zeta = 2.3; \]
\[K = 100; \]
\[A = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta \omega_n \end{bmatrix}; \]
\[B = [0; K]; \]
\[v0 = [0; 0]; \]
\[tspan = [0 2]; \]
\[x = @(t) 1; \]
\[df = @ (t, v) A*v + B*x(t); \]
\[[t, vv] = \text{ode45}(df, tspan, v0); \]
\[\text{plot}(t, vv(:, 1)); \]
\[\text{xlabel('t');} \]
\[\text{ylabel('theta');} \]

FIGURE E2.2b
Locus of roots, \(0 \leq R \leq \infty \)

FIGURE E2.2c
Locus of roots, \(0 \leq \zeta \leq \infty \)

FIGURE E2.2d
Step response, \(\zeta = 0.707 \)
Comment: It is rumored that pilots like this value of \(\zeta \), because it yields a rapid response with just a slight overshoot that won’t spill the coffee.

FIGURE E2.2e
Step response, \(\zeta = 0 \)
Comment: It is a fact that neither passengers nor crew like \(\zeta = 0 \).

FIGURE E2.2f
Step response, \(\zeta = 2.3 \)
Comment: They (passengers and crew) like this better, but it’s pretty slow.

FIGURE E2.2g
Step response, \(\zeta = 0.1 \), natural frequency = 10
Example 2.3 Unit Impulse Response of a Lowpass Filter

A lowpass RC filter can be modeled by

\[\dot{v}(t) + \frac{1}{RC} v(t) = \frac{1}{RC} e(t) \]

a. Find the characteristic equation.
b. Find \(v(t) \) for \(e_1(t) = \frac{1}{\Delta} u(t) \) and \(v(0) = 0 \).
c. Find \(v(t) \) for \(e_1(t) = \frac{1}{\Delta} u(t-\Delta) \) and \(v(0) = 0 \).
d. Find \(v(t) \) for \(e(t) = e_1(t) - e_2(t) \) and \(v(0) = 0 \).
e. Let \(\Delta \to 0 \), show that

\[h(t) = \frac{1}{RC} e^{-t/\Delta} u(t) \]

delta=1;
A=-1;
B=1;
v0=0;
tspan=[0 4];
x=@(t) (t<=delta && t>=0)/delta;
df=@(t,v) A*v+B*x(t);
[t vv]=ode45(df,tspan,v0);
plot(t,vv);
xlabel('t');
ylabel('theta');
Example 2.4 Convolution

a. An LTI causal system is modeled by unit impulse response \(h(t) \).
Prove that for \(x(t)=u(t) \),
\[
\gamma(t) = \int_{0}^{t} h(\tau) d\tau
\]

b. A finite duration integrator can be modeled by the unit impulse response \(h(t)=u(t)-u(t-a) \). If the input is
\[x(t) = Ae^{-bt}u(t), \quad b > 0, \]

Find the output by graphic method.

c. Find the output by analytical method.

d. If the hypothetical integrator is modeled by the noncausal unit impulse response \(h(t) = u(t + \frac{a}{2}) - u(t - \frac{a}{2}) \), find \(y(t) \).

Figure E2.4c Plots of \(h(\tau) \) and a folded \(x(-\tau) \).

Figure E2.4d Integrand for \(0 \leq t \leq a \)

Figure E2.4e Integrand for \(t > a \)

Figure E2.4f Approximation of output \(y(t) \)